Counting Spanning Trees and Other Structures in Non-constant-jump Circulant Graphs
نویسندگان
چکیده
Circulant graphs are an extremely well-studied subclass of regular graphs, partially because they model many practical computer network topologies. It has long been known that the number of spanning trees in n-node circulant graphs with constant jumps satisfies a recurrence relation in n. For the non-constant-jump case, i.e., where some jump sizes can be functions of the graph size, only a few special cases such as the Möbius ladder had been studied but no general results were known. In this note we show how that the number of spanning trees for all classes of n node circulant graphs satisfies a recurrence relation in n even when the jumps are non-constant (but linear) in the graph size. The technique developed is very general and can be used to show that many other structures of these circulant graphs, e.g., number of Hamiltonian Cycles, Eulerian Cycles, Eulerian Orientations, etc., also satisfy recurrence relations. The technique presented for deriving the recurrence relations is very mechanical and, for circulant graphs with small jump parameters, can easily be quickly implemented on a computer. We illustrate this by deriving recurrence relations counting all of the structures listed above for various circulant graphs.
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملAn efficient approach for counting the number of spanning trees in circulant and related graphs
متن کامل
A formula for the number of spanning trees in circulant graphs with non-fixed generators∗
We consider the number of spanning trees in circulant graphs of βn vertices with generators depending linearly on n. The matrix tree theorem gives a closed formula of βn factors; while we derive a formula of β−1 factors. The spanning tree entropy of these graphs is then compared to the one of fixed generated circulant graphs.
متن کاملUnhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters
It has long been known that the number of spanning trees in circulant graphs with fixed jumps and n nodes satisfies a recurrence relation in n. The proof of this fact was algebraic (relating the products of eigenvalues of the graphs’ adjacency matrices) and not combinatorial. In this paper we derive a straightforward combinatorial proof of this fact. Instead of trying to decompose a large circu...
متن کاملFurther analysis of the number of spanning trees in circulant graphs
Let 1 s1<s2< · · ·<sk n/2 be given integers. An undirected even-valent circulant graph, C12k n , has n vertices 0, 1, 2, . . ., n− 1, and for each si (1 i k) and j (0 j n− 1) there is an edge between j and j + si (mod n). Let T (C12k n ) stand for the number of spanning trees of C12k n . For this special class of graphs, a general and most recent result, which is obtained in [Y.P. Zhang, X.Yong...
متن کامل